Earthquake and Wind Resistance
CAI Yong, YU Shouyun, YU Ming, XU Chenyun, LUO Jinhui, GUO Xiaonong
Steel-structured fully indoor substations are the preferred solution for urban green substations, offering advantages such as land conservation and stable operation. However, once a fully indoor substation suffers earthquake, it will lead to enormous economic losses. Additionally, traditional seismic design overlooks the structure-equipment interaction, resulting in designs that tend to be unsafe. In this study, the coupling model and the main structure model were established respectively for a 110 kV steel-structured fully indoor substation. The coupled model accounts for the structure-equipment interaction, while the main structure model treats equipment as floor loads. Subsequently, dynamic characteristic analysis (to obtain key parameters such as natural vibration frequencies and mode shapes) and time-history analysis were conducted on the two types of models. Finally, the Incremental Dynamic Analysis (IDA) method was adopted: by adjusting the peak ground acceleration (PGA) of seismic waves, the response indices of the main structure and equipment under different seismic intensities were quantified, so as to comprehensively evaluate the seismic vulnerability of both. The results show that: (1) The acceleration amplification effect of the 2nd-floor GIS (Gas Insulated Switchgear) equipment bushings is significant (with an average value of 4.2 and a maximum value of 5.1), which is much greater than that of the 2nd-floor slab, making the bushings prone to damage due to excessive acceleration during earthquakes; (2) The structure-equipment interaction exerts a notable impact: the maximum difference in amplification factors between the coupled model and the main structure model is 20%, and the maximum difference in inter-story drift angles is 15%; (3) Under the action of some seismic waves, the torsional displacement ratio of the coupled model exceeds 1.2, so torsion reduction measures need to be implemented; (4) Under the same seismic intensity, the failure probability of electrical equipment is far higher than that of the main structure. For instance, when PGA=1.0g, the equipment damage probability reaches 60%, while the main structure barely collapses.