以实际工程案例为背景,分析在不同地震强度下黏滞阻尼器参数对结构附加阻尼比的影响,以及规范方法与能量比值法对附加阻尼比的计算差异。考虑阻尼系数、阻尼指数以及地震强度等因素,采用Etabs软件对案例进行参数分析。研究结果表明:不同强度地震下阻尼系数和阻尼指数与附加阻尼比的关系均呈抛物线状,先增大后减小,存在最优解,且随着地震强度增加,最优解参数变大;阻尼系数或指数较小时,多遇地震下阻尼比最大,阻尼系数或指数适中时,设防地震下阻尼比最大,阻尼系数或指数较大时,罕遇地震下阻尼比最大;楼层矮、扭转效应小或者地震强度小时规范方法计算的附加阻尼比大于能量比值法,而对于楼层高、扭转效应明显或者地震强度较大时二者的关系会随之发生改变。
Abstract
In this study, actual engineering cases serve as the background for analyzing the influence of viscous damper parameters on the additional damping ratio under different seismic intensities. The calculation differences of the additional damping ratio between the normative method and the energy ratio method are also examined. Taking into account factors such as damping coefficient, damping index and seismic intensity, parametric analysis is carried out using Etabs software. It was found that the relationship between the damping coefficient and damping index and the additional damping ratio under earthquakes of different intensities is parabolic, where it initially increases and then decreases. There exists an optimal solution, and as earthquake intensity increases, the optimal solution parameters become larger. When the damping coefficient or index is small, the damping ratio is maximum under frequent earthquakes. When moderate, it is maximum under design basis earthquakes,and when large is maximum under rare earthquakes. The normative method yields larger results than the energy ratio method when the floor is low, torsional effects are small, or seismic intensity is low, with the relationship between the two varying accordingly.
关键词
黏滞阻尼器 /
附加阻尼比 /
地震强度 /
规范法 /
能量比值法 /
无害位移
{{custom_keyword}} /
Key words
viscous damper /
additional damping ratio /
seismic intensity /
normative method /
energy ratio method /
harmless displacement
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周颖,黄智谦,MARIO Aguaguima,等.屈曲约束支撑力学性能试验加载制度研究[J].建筑结构学报,2021,42(11):182-194.
Zhou Ying,Huang Zhiqian,Mario Aguaguima,et al.Research on the loading system of mechanical properties test of buckling restrained braces[J].Journal of Building Structure,2021,42(11):182-194.(in Chinese)
[2] 吴克川,陈旭,陶忠,等.联合消能减震结构设计方法与工程应用分析[J].广西大学学报(自然科学版),2021,46(4):831-843.
Wu Kechuan,Chen Xu,Tao Zhong,et al.Design Method and Engineering Application Analysis of Joint Energy Dissipation Structure[J].Journal of Guangxi University (Natural Science Edition),2021,46(4):831-843.(in Chinese)
[3] 贾国庆. 高烈度区某办公楼消能减震设计[J].建筑结构,2021,51(S1):814-820.
Jia Guoqing.Energy dissipation and seismic design of an office building in high intensity zone[J].Building Structure,2021,51(S1):814-820.(in Chinese)
[4] 杨凯,丁孙玮,洪彦昆,等.黏滞阻尼器初始刚度的合理取值探讨[J].建筑结构,2021,51(1):121-125.
Yang Kai,Ding Sunwei,Hong Yankun,et al.Discussion on reasonable value of initial stiffness of viscous damper[J].Building Structure,2021,51(1):121-125.(in Chinese)
[5] Chopra A K.Dynamics of Structures:Theory and Ap‐plications to Earthquake Engineering[M].2nd Edition.Up‐per Saddle River:Prentice-Hall,2001.
[6] Charney F A,McNamara R J.Comparison of methods for computing equivalent viscous damping ratios of structures with added viscous damping[J].Journal of Earthquake Engineering,2008,134(1):32-44.
[7] Antonio O.Additional viscous dampers for civil structures:Analysis of design methods based on effective evaluation of modal damping ratios[J].Engineering Structures,2009,31(5):1093-1011.
[8] 胡岫岩,任晓崧,翁大根,等.附加黏滞阻尼器结构附加等效阻尼比算法研究[J].力学季刊,2013,34(1):114-124.
Hu Xiuyan,Ren Xiaosong,Weng Dagen,et al.Research on the algorithm of additional equivalent damping ratio of structures with additional viscous dampers[J].Chinese Quarterly of Mechanics,2013,34(1):114-124.(in Chinese)
[9] 巫振弘,薛彦涛,王翠坤,等.多遇地震作用下消能减震结构附加阻尼比计算方法[J].建筑结构学报,2013,34(12):19-25.
Wu Zhenhong,Xue Yantao,Wang Cuikun,et al.Calculation method of additional damping ratio of energy dissipation structures under frequent earthquakes[J].Journal of Building Structures,2013,34(12):19-25.(in Chinese)
[10] 翁大根,李超,胡岫岩,等.减震结构基于模态阻尼耗能的附加有效阻尼比计算[J].土木工程学报,2016,49(S1):19-24,34.
Weng Dagen,Li Chao,Hu Xiuyan,et al.Calculation of additional effective damping ratio of damping structures based on modal damping energy dissipation[J].China Civil Engineering Journal,2016,49(S1):19-24,34.(in Chinese)
[11] 陆伟东,刘伟庆,汪涛.消能减震结构附加等效阻尼比计算方法[J].南京工业大学学报(自然科学版),2009,31(1):97-100.
Lu Weidong,Liu Weiqing,Wang Tao.Calculation method of additional equivalent damping ratio of energy dissipation and vibration reduction structures[J].Journal of Nanjing University of Technology (Natural Science Edition),2009,31(1):97-100.(in Chinese)
[12] 陈云,胡大柱.浅谈BRB+黏滞阻尼器组合体系及其在云南地区应用[J].建筑结构,2018,48(S2):393-398.
Chen Yun,Hu Dazhu.On BRB+viscous damper composite system and its application in Yunnan[J].Building Structure,2018,48(S2):393-398.(in Chinese)
[13] 冉田苒,石诚,张同亿,等.黏滞阻尼器位移损失对结构减震性能的影响研究[J].建筑结构,2021,51(3):98-102,143.
Ran Tianla,Shi Cheng,Zhang Tongyi,et al.Research on the influence of displacement loss of viscous damper on structural seismic performance[J]. Building Structure,2021,51(3):98-102,143.(in Chinese)
[14] 张明,何平,陈云,等.高烈度地区某图书馆建筑减震设计[J].结构工程师,2019,35(5):9-16.
Zhang Ming,He Ping,Chen Yun,et al.Seismic design of a library building in a high intensity area[J].Structural Engineers,2019,35(5):9-16.(in Chinese)
[15] 陈云. 钢框架减震方案对比研究[J].结构工程师,2021,37(02):234-242.
Chen Yun.Comparative study on seismic reduction schemes of steel frames[J].Structural Engineers,2021,37(2):234-242.(in Chinese)
[16] 耿耀明,刘文燕.设置黏滞阻尼器的装配整体式框架结构抗震性能试验研究[J].建筑结构,2022,52(1):102-108,101.
Geng Yaoming,Liu Wenyan.Experimental study on seismic performance of assembled monolithic frame structures with viscous dampers[J].Building Structure,2022,52(1):102-108,101.(in Chinese)
[17] 丁洁民,吴宏磊.黏滞阻尼技术工程设计与应用[M].北京:中国建筑工业出版社,2017.
Ding Jiemin,Wu Honglei.Engineering design and application of viscous damping technology[M].Beijing:China Building Industry Press,2017.(in Chinese)
[18] 刘大海,杨翠如,钟锡根.高层建筑抗震设计[M].北京:中国建筑工业出版社,1993.
Liu Dahai,Yang Cuiru,Zhong Xigen.Seismic design of high rise buildings[M].Beijing:China Architecture & Building Press,1993.(in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}