高温高压作用下基于数值仿真的安全壳力学响应分析及承载力研究

鲁正, 范俏巧, 谢孟宏, 蒋迪, 宋孟燕, 柳祥千, 周映旻

结构工程师 ›› 2023, Vol. 39 ›› Issue (4) : 60-66.

PDF(1383 KB)
PDF(1383 KB)
结构工程师 ›› 2023, Vol. 39 ›› Issue (4) : 60-66.
结构分析

高温高压作用下基于数值仿真的安全壳力学响应分析及承载力研究

  • 鲁正1,2,*, 范俏巧1, 谢孟宏1, 蒋迪3, 宋孟燕3, 柳祥千1, 周映旻1
作者信息 +

Numerical Analysis of Mechanical Response and Load-bearing Capacity of Containment under High Temperature and Pressure

  • LU Zheng1,2,*, FAN Qiaoqiao1, XIE Menghong1, JIANG Di3, SONG Mengyan3, LIU Xiangqian1, ZHOU Yinmin1
Author information +
文章历史 +

摘要

安全壳结构是核反应堆的最后一道屏障,具有重要作用。为进一步深入研究安全壳的包容能力,以某一新型压力水堆核反应堆安全壳为研究对象,采用ABAQUS有限元软件,并结合Rhino、Grasshopper等第三方软件进行数值仿真分析,以研究其在严重事故(高温高压双重作用)条件下安全壳各组分的力学变化全过程。结果表明:高温高压荷载作用下混凝土开裂更易发生;安全壳结构首先发生混凝土层开裂,最终由于钢衬里大面积屈服、撕裂而导致其失去包容能力,从而功能性失效。

Abstract

The containment is the final barrier of the nuclear reactor and it plays an important role in the engineering project. In order to further investigate the mechanical properties of the containment and study the whole developing process of each component under the action of severe accidents (double loads including high temperature and high pressure),this paper takes a new type of pressure water reactor nuclear reactor containment as the research object, uses ABAQUS finite element software, and combines with Rhino & Grasshopper to conduct numerical approach analysis. Concrete cracking is more likely to occur under high temperature and high pressure loads, which needs special attention. According to the failure criteria, firstly the concrete layer cracks and the whole structure loses its capacity and comes to the failure stage due to extensive yielding and tearing of the steel liner.

关键词

安全壳 / 混凝土 / 预应力 / 数值仿真

Key words

containment / concrete / prestress / numerical analysis

引用本文

导出引用
鲁正, 范俏巧, 谢孟宏, 蒋迪, 宋孟燕, 柳祥千, 周映旻. 高温高压作用下基于数值仿真的安全壳力学响应分析及承载力研究. 结构工程师. 2023, 39(4): 60-66
LU Zheng, FAN Qiaoqiao, XIE Menghong, JIANG Di, SONG Mengyan, LIU Xiangqian, ZHOU Yinmin. Numerical Analysis of Mechanical Response and Load-bearing Capacity of Containment under High Temperature and Pressure. STRUCTURAL ENGINEERS. 2023, 39(4): 60-66

参考文献

[1] 王宇,朱沈超,陈芳斌,等.中国核电与可再生能源发电协调发展初探[J].可再生能源,2021,39(8):1069-1077.
Wang Yu,Zhu Shenchao,Chen Fangbin,et al.China's nuclear power and renewable energy generation synergy:a preliminary study[J].Renewable Energy Resources,2021,39(8):1069-1077.(in Chinese)
[2] 黄超群,雷小芳.AP1000核岛结构在主余震序列下的响应研究[J].结构工程师,2020,36(6):80-89.
Huang Chaoqun,Lei Xiaofang.Study on response of AP1000 nuclear island structure under mainshock and aftershock[J].Structural Engineering,2020,36(6):80-89.(in Chinese)
[3] 钱稼茹,赵作周,段安,等.CNP1000核电厂安全壳1:10模型拟动力试验[J].土木工程学报,2007(6):7-13,53.
Qian Jiaru,Zhao Zuozhou,Duan An,et al.Pseudo-dynamic test of a 1:10 model of pre-stressed concrete containment vessel for CNP1000 nuclear power plant[J].China Civil Engineering Journal,2007(6):7-13,53.(in Chinese)
[4] Chakraborty M K,Acharya S,Pisharady A S,et al.Assessment of ultimate load capacity of concrete containment structures against structural collapse[J].Nuclear Engineering & Design,2017,323(nov.):417-426.
[5] Parmar R M,Singh T,Thingamajig I,et al.Over-pressure test on BARCOM pre-stressed concrete containment[J].Nuclear Engineering and Design,2014,269(4):177-183.
[6] 阳涛,杨哲飚,陆新征,等.核电厂安全壳结构模型碳纤维布加固试验研究[J].工程力学,2017,34(8):144-153.
Yang Tao,Yang Zhebiao,Lu Xinzheng,et al.Experimental study of nuclear power plant concrete containment strengthened with externally wrapped carbon fiber reinforced polymer sheets[J].Engineering Mechanics,2017,34(8):144-153.(in Chinese)
[7] 段安,钱稼茹.CNP1000核电厂安全壳模型结构抗震安全分析[J].工程力学,2009,26(4):153-157,196.
Duan An,Qian Jiaru.A seismic safety analysis of a containment vessel model for CNP1000 nuclear power plant[J].Engineering Mechanics,2009,26(4):153-157,196.(in Chinese)
[8] 韩鹏飞. 核工程双钢板混凝土结构抗大型商用飞机撞击研究[D].北京:清华大学,2018.
Han Pengfei.Study on steel-concrete-steel structures in nuclear engineering subjected to a large commercial aircraft impact[D].Beijing:Tsinghua University,2018.(in Chinese)
[9] Lin,Kaiqi,Cen,et al.Comparing different fidelity models for the impact analysis of large commercial aircrafts on a containment building[J].Engineering Failure Analysis,2015,57:254-269.
[10] 林诚格,赵瑞昌,刘志弢.安全壳在事故情况下的完整性分析[J].核科学与工程,2010,30(2):181-192.
Lin Chenge,Zhao Ruichang,Liu Zhitao.Containment integrity analysis under accidents[J].Nuclear Science and Engineering,2010,30(2):181-192.(in Chinese)
[11] Hu H T,Liang J I.Ultimate analysis of BWR Mark III reinforced concrete containment subjected to internal pressure[J].Nuclear Engineering and Design,2000,195(1):1-11.
[12] 吴畅,孟少平,周臻.混凝土安全壳的LOCA温度场分布与温度内力分析[J].工程力学,2010,27(12):206-212.
Wu Chang,Meng Shaoping,Zhou Zhen.Analyses on temperature field distribution and internal force of concrete containment vessel after loca[J].Engineering Mechanics,2010,27(12):206-212.(in Chinese)
[13] 张龙. 高温高压下核电厂安全壳极限承载能力影响因素分析[D].哈尔滨:哈尔滨工程大学,2014.
Zhang Long.Ultimate bearing capacity analysis of nuclear power plant containment under high temperature and pressure[D].Harbin:Harbin Engineering University,2014.(in Chinese)
[14] 熊辉霞,张磊.体外预应力混凝土梁非线性有限元数值建模分析[J].武汉工程大学学报,2008,30(1):4.
Xiong Huixia,Zhang Lei.Nonlinear finite element modeling analysis of external prestressed concrete beam[J].Journal of Wuhan Institute of Technology,2008,30(1):4.(in Chinese)
[15] 李振宝,林树潮,王冬雁,等.某核电站安全壳预应力施工模拟分析[J].工业建筑,2014,44(5):7.
Li Zhenbao,Lin Shuchao,Wang Dongyan,et al.Prestressed tendon construction analysis of a nuclear power plant[J].Industrial Construction,2014,44(5):7.(in Chinese)
[16] 薛志成,潘长风,裴强,等.预应力模拟方法对核安全壳结构动力特性的影响[J].沈阳工业大学学报,2022,44(1):102-108.
Xue Zhicheng,Pan Changfeng,Pei Qiang,et al.Influence of prestress simulation methods on dynamic characteristic of nuclear containment structure[J].Journal of Shenyang University of Technology,2022,44(1):102-108.(in Chinese)
[17] 廖开星,遆文新,王明谦,等.预应力混凝土安全壳模型施工期和后续使用性能分析[J].结构工程师,2017,33(6).
Liao Kaixing,Ti Wenxin,Wang Mingqian,et al.Analysis on performance of prestressed concrete nuclear containment model during construction and service life[J].Structural Engineers,2017,33(6).(in Chinese)
[18] 中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2010.
Ministry of Housing and Urban-Rural Development of the People's Republic of China.Code for design of concrete structures:GB 50010—2010[S].Beijing: China Architecture and Building Press,2010.(in Chinese)
[19] Jin S,Li Z,Lan T,et al.Fragility analysis of prestressed concrete containment under severe accident condition[J].Annals of Nuclear Energy,2019,131(SEP.):242-256.
[20] Alhanaee S,Yi Y,Schiffer A.Ultimate pressure capacity of nuclear reactor containment buildings under unaged and aged conditions[J].Nuclear Engineering and Design,2018,335(AUG.):128-139.
[21] 薛荣军,王洪良,褚濛,等.预应力安全壳内压作用下的有限元研究[J].建筑结构,2018,48(8):6.
Xue Rongjun,Wang HonglLiang,Chu Meng,et al.Finite element research on prestressed concrete containment under inner pressure[J].Building Structure,2018,48(8):6.(in Chinese)
[22] International Organization for Standardization.Boilers and Pressure Vessels[M].ISO,2007.
[23] Ashar H G,Bandyopadhyay R L,Carrato P J,et al.Code Requirements for Nuclear Safety-Related Concrete Structures (ACI 349-06) and Commentary[S].ACI Committee 349,2007.
[24] 国家能源局.压力堆核电厂预应力混凝土安全壳设计规范:NB/T 20303—2014[S].北京:中国建筑工业出版社,2014.
National Energy Administration.Design requirements for prestressed concrete containments for pressure water reactor nuclear power plants:NB/T 20303—2014[S].Beijing:China Architecture and Building Press,2014.(in Chinese)
[25] Rahn F.Technical foundation of reactor safety-knowledge base for resolving severe accident issues[J].Electric Power Research Institute,Final Report,2010,1020497.
[26] Gauntt R,Cole R,Erickson C,et al.MELCOR computer code manuals[J].Sandia National Laboratories,NUREG/CR,2000,6119.
[27] Haste T,Birchley J,Cazzoli E,et al.MELCOR/MACCS simulation of the TMI-2 severe accident and initial recovery phases,off-site fission product release and consequences[J].Nuclear Engineering and Design,2006,236(10):1099-112.

基金

国家重点研发计划(2020YFB1901402)
PDF(1383 KB)

610

Accesses

0

Citation

Detail

段落导航
相关文章

/